Limited artemisinin resistance-associated polymorphisms in Plasmodium falciparum K13-propeller and PfATPase6 gene isolated from Bioko Island, Equatorial Guinea
نویسندگان
چکیده
OBJECTIVE With emergence and geographically expanding of antimalarial resistance worldwide, molecular markers are essential tool for surveillance of resistant Plasmodium parasites. Recently, single-nucleotide polymorphisms (SNPs) in the PF3D7_1343700 kelch propeller (K13-propeller) domain are shown to be associated with artemisinin (ART) resistance in vivo and in vitro. This study aims to investigate the ART resistance-associated polymorphisms of K13-propeller and PfATPase6 genes in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea (EG). METHODS A total of 172 samples were collected from falciparum malaria patients on Bioko Island between 2013 and 2014. The polymorphisms of K13-propeller and PfATPase6 genes were analyzed by Nest-PCR and sequencing. RESULTS Sequences of K13-propeller and PfATPase6 were obtained from 90.74% (98/108) and 91.45% (139/152) samples, respectively. The 2.04% (2/98) cases had non-synonymous K13-propeller A578S mutation but no found the mutations associated with ART resistance in Southeast Asia. For PfATPase6, the mutations were found at positions N569K and A630S with the mutation prevalence of 7.91% (11/139) and 1.44% (2/139), respectively. In addition, a sample with the mixed type at position I723V was discovered (0.72%, 1/139). CONCLUSIONS This study initially offers an insight of K13-propeller and PfATPase6 polymorphisms on Bioko Island, EG. It suggests no widespread ART resistance or tolerance in the region, and might be helpful for developing and updating guidance for the use of ART-based combination therapies (ACTs).
منابع مشابه
Polymorphisms in K13 and Falcipain-2 Associated with Artemisinin Resistance Are Not Prevalent in Plasmodium falciparum Isolated from Ugandan Children
The emergence of resistance to artemisinin derivatives in Southeast Asia, manifested as delayed clearance of Plasmodium falciparum following treatment with artemisinins, is a major concern. Recently, the artemisinin resistance phenotype was attributed to mutations in portions of a P. falciparum gene (PF3D7_1343700) encoding kelch (K13) propeller domains, providing a molecular marker to monitor ...
متن کاملNo Polymorphism in Plasmodium falciparum K13 Propeller Gene in Clinical Isolates from Kolkata, India
Molecular markers associated with artemisinin resistance in Plasmodium falciparum are yet to be well defined. Recent studies showed that polymorphisms in K13 gene are associated with artemisinin resistance. The present study was designed to know the pattern of polymorphisms in propeller region of K13 gene among the clinical isolates collected from urban Kolkata after five years of ACT implement...
متن کاملPolymorphisms of Plasmodium falciparum k13-propeller gene among migrant workers returning to Henan Province, China from Africa
BACKGROUND Henan Province has been in the malaria elimination stage, with all reports of the disease being imported since 2012 and over 90% coming from Africa. Surveillance and population studies are essential for the early detection and subsequent prevention of the spread of drug resistance. The K13-propeller gene was recently identified as a proposed molecular marker of artemisinin (ART) resi...
متن کاملAbsence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study.
Plasmodium falciparum parasites that are resistant to artemisinins have been detected in Southeast Asia. Resistance is associated with several polymorphisms in the parasite's K13-propeller gene. The molecular epidemiology of these artemisinin resistance genotypes in African parasite populations is unknown. We developed an assay to quantify rare polymorphisms in parasite populations that uses a ...
متن کاملLack of artemisinin resistance in Plasmodium falciparum in northwest Benin after 10 years of use of artemisinin-based combination therapy
AIM In Benin, artemisinin-based combination therapy (ACT) has been recommended as the first-line treatment for uncomplicated Plasmodium falciparum malaria since 2004. The emergence in Southeast Asia of parasites that are resistant to artemisinins poses a serious threat to global control of this disease. The presence of artemisinin resistance genotypes in parasite populations in Benin is current...
متن کامل